Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535195

RESUMO

Kodamaea ohmeri is an environmental yeast considered a rare emerging pathogen. In clinical settings, the correct identification of this yeast is relevant because some isolates are associated with resistance to antifungals. There is a lack of available data regarding the geographical distribution, virulence, and drug resistance profile of K. ohmeri. To contribute to the knowledge of this yeast, this study aimed to describe in depth three isolates of K. ohmeri associated with fungemia in Honduras. The identification of the isolates was carried out by sequencing the ribosomal ITS region. In addition, the susceptibility profile to antifungals was determined, and some properties associated with virulence were evaluated (exoenzyme production, biofilm formation, cell adhesion, and invasion). The isolates showed strong protease, phospholipase, and hemolysin activity, in addition to being biofilm producers. Adherence and invasion capacity were evident in the HeLa and Raw 264.7 cell lines, respectively. This study expands the understanding of the underlying biological traits associated with virulence in K. ohmeri, and it is the first report of the detection and identification of K. ohmeri in Honduras as a cause of human infection.

2.
Trop Med Infect Dis ; 8(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505641

RESUMO

Several studies have documented the presence of Acinetobacter baumannii, a known multi-drug-resistant pathogen, in the human head louse, Pediculus humanus capitis. Since no reports from countries in Latin America have been published, the aim of the present study was to determine whether A. baumannii was present in head lice specimens collected in this geographic region. Head lice specimens from Argentina, Colombia, and Honduras were analyzed. PCR assays were performed to confirm the specimens' species and to investigate whether the DNA of A. baumannii was present. The products of the latter were sequenced to confirm bacterial identity. Altogether, 122 pools of head lice were analyzed, of which two (1.64%) were positive for A. baumannii's DNA. The positive head lice had been collected at the poorest study site in Honduras. The remaining specimens were negative. This study is the first to report the presence of A. baumannii in human head lice from Latin America. Further investigations are required to elucidate whether these ectoparasites can serve as natural reservoirs or even effectively transmit A. baumannii to humans.

4.
Malar J ; 22(1): 110, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978056

RESUMO

BACKGROUND: Malaria remains a main parasitic disease of humans. Although the largest number of cases is reported in the African region, there are still endemic foci in the Americas. Central America reported 36,000 malaria cases in 2020, which represents 5.5% of cases in the Americas and 0.015% of cases globally. Most malaria infections in Central America are reported in La Moskitia, shared by Honduras and Nicaragua. In the Honduran Moskitia, less than 800 cases were registered in 2020, considering it an area of low endemicity. In low endemicity settings, the number of submicroscopic and asymptomatic infections tends to increase, leaving many cases undetected and untreated. These reservoirs challenge national malaria elimination programmes. This study aimed to assess the diagnostic performance of Light Microscopy (LM), a nested PCR test and a photoinduced electron transfer polymerase chain reaction (PET-PCR) in a population of febrile patients from La Moskitia. METHODS: A total of 309 febrile participants were recruited using a passive surveillance approach at the Puerto Lempira hospital. Blood samples were analysed by LM, nested PCR, and PET-PCR. Diagnostic performance including sensitivity, specificity, negative and positive predictive values, kappa index, accuracy, and ROC analysis was evaluated. The parasitaemia of the positive samples was quantified by both LM and PET-PCR. RESULTS: The overall prevalence of malaria was 19.1% by LM, 27.8% by nPCR, and 31.1% by PET-PCR. The sensitivity of LM was 67.4% compared to nPCR, and the sensitivity of LM and nPCR was 59.6% and 80.8%, respectively, compared to PET-PCR. LM showed a kappa index of 0.67, with a moderate level of agreement. Forty positive cases by PET-PCR were not detected by LM. CONCLUSIONS: This study demonstrated that LM is unable to detect parasitaemia at low levels and that there is a high degree of submicroscopic infections in the Honduran Moskitia.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária/diagnóstico , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , Parasitemia/epidemiologia , Tomografia por Emissão de Pósitrons , Malária Falciparum/parasitologia , Sensibilidade e Especificidade , Plasmodium falciparum/genética
5.
Travel Med Infect Dis ; 53: 102567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36958705

RESUMO

Recently, there has been a significant increase in irregular migration from Central America's northern triangle (Honduras, Guatemala and El Salvador). Hondurans who migrate to North America face numerous risks to their lives and health. Infectious diseases are one of the most serious threats to migrants both during the migration process and once they arrive in the host country. The major infectious diseases affecting both migrants and the health services in non-endemic countries that care for these migrants are discussed.


Assuntos
Doenças Transmissíveis , Migração Humana , Humanos , América do Norte , Honduras/epidemiologia , El Salvador/epidemiologia , Guatemala/epidemiologia , Doenças Transmissíveis/epidemiologia
6.
Malar J ; 22(1): 57, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805673

RESUMO

BACKGROUND: Vector populations are a key target for malaria control and elimination. In Honduras, there are at least 12 reported anopheline species, however, the definitive number of species remains uncertain. Due to the inherent limitations of morphological identification of Anopheles species, molecular approaches have been developed to provide accurate identification and robust surveillance of local malaria vectors. The aim of this study was to design and assess three PCR-RFLP assays to identify anopheline species known to presently occur in Honduras. METHODS: Mosquitoes captured between 2018 and 2022 in seven malaria-endemic and non-endemic departments in Honduras were analysed. The ITS2 ribosomal region and three restriction enzyme-based assays were evaluated in silico and experimentally. RESULTS: A total of 132 sequences from 12 anopheline species were analysed. The ITS2 marker showed length polymorphisms that generated products between 388 and 592 bp and no relevant intraspecies polymorphisms were found. Furthermore, the three PCR-RFLP assays were able to differentiate 11 species with sufficient precision and resolution. CONCLUSION: The ITS2 region was shown to be a useful molecular marker for identifying local Anopheles species. In addition, the PCR-RFLP assays evaluated here proved to be capable of discriminating most of the anopheline species present in Honduras. These methods provide alternatives to improve entomological surveillance of Anopheles in Honduras and other Mesoamerican countries.


Assuntos
Anopheles , Animais , Anopheles/genética , Polimorfismo de Fragmento de Restrição , Honduras , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase
8.
Trop Med Infect Dis ; 7(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893657

RESUMO

The elimination of malaria requires strengthening diagnosis and offering adequate and timely treatment. Imported cases of falciparum malaria represent a major challenge for pre-elimination areas, such as Central America, where chloroquine and primaquine continue to be used as first-line treatment. The pfs47 gene has been previously described as a precise molecular marker to track the geographic origin of the parasite. The aim of this study was to design a simple and low-cost technique using the polymorphic region of pfs47 to assess the geographic origin of P. falciparum strains. A PCR-RFLP technique was developed and evaluated using the MseI enzyme that proved capable of discriminating, with reasonable precision, the geographical origin of the parasites. This method could be used by national surveillance laboratories and malaria elimination programs in countries such as Honduras and Nicaragua in cases of malaria where an origin outside the Central American isthmus is suspected.

9.
Insects ; 13(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735885

RESUMO

Anopheles species are the vectors of malaria, one of the diseases with the greatest impact on the health of the inhabitants of the tropics. Due to their epidemiological relevance and biological complexity, monitoring of anopheline populations in current and former malaria-endemic areas is critical for malaria risk assessment. Recent efforts have described the anopheline species present in the main malaria foci in Honduras. This study updates and expands knowledge about Anopheles species composition, geographical distribution, and genetic diversity in the continental territory of Honduras as in the Bay Islands. Outdoor insect collections were carried out at 25 sites in eight municipalities in five departments of Honduras between 2018 and 2021. Specimens were identified using taxonomic keys. Partial COI gene sequences were used for molecular species identification and phylogenetic analyses. In addition, detection of Plasmodium DNA was carried out in 255 female mosquitoes. Overall, 288 Anopheles mosquitoes were collected from 8 municipalities. Eight species were morphologically identified. Anopheles albimanus was the most abundant and widely distributed species (79.5%). A subset of 175 partial COI gene sequences from 8 species was obtained. Taxonomic identifications were confirmed via sequence analysis. Anopheles albimanus and An. apicimacula showed the highest haplotype diversity and nucleotide variation, respectively. Phylogenetic clustering was found for An. argyritarsis and An. neomaculipalpus when compared with mosquitoes from other Neotropical countries. Plasmodium DNA was not detected in any of the mosquitoes tested. This report builds upon recent records of the distribution and diversity of Anopheles species in malaria-endemic and non-endemic areas of Honduras. New COI sequences are reported for three anopheline species. This is also the first report of COI sequences of An. albimanus collected on the island of Roatán with apparent gene flow relative to mainland populations.

10.
Pathogens ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745474

RESUMO

Aedes aegypti is a hematophagous and highly anthropophilic mosquito with a wide distribution, particularly in tropical and subtropical regions of the world. Ae. aegypti is the main vector of several febrile diseases called arboviruses (dengue, yellow fever, chikungunya, and zika viruses), which represent an important public health problem. Populations of this mosquito were nearly eliminated from the Americas in the mid-20th century; however, after the abandonment of control measures, mosquito populations have been recovering territory, have expanded by anthropogenic mechanisms, and have been joined by new populations reintroduced from other continents. The objective of this pilot study was to determine the genetic variability of Aedes aegypti collected in four cities located along the so-called logistics corridor of Honduras, which connects the Caribbean Sea to the Pacific Ocean. We studied the sequences of two molecular markers: the cytochrome c oxidase 1 (COI mtDNA) gene and the internal transcribed spacer 2 (ITS2 rDNA) of 40 mosquitoes. Phylogenetic analyzes show two separate clades with a low number of nucleotide differences per site, three haplotypes, and low haplotype diversity. These results suggest a low genetic diversity in the populations of Ae. aegypti in Honduras in relation to that reported in other countries of the Central American isthmus.

11.
Diagnostics (Basel) ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35626361

RESUMO

The diagnosis of malaria in Honduras is based mainly on microscopic observation of the parasite in thick smears or the detection of parasite antigens through rapid diagnostic tests when microscopy is not available. The specific treatment of the disease depends exclusively on the positive result of one of these tests. Given the low sensitivity of conventional methods, new diagnostic approaches are needed. This study evaluates the in-field performance of a device (Gazelle™) based on the detection of hemozoin. This was a double-blind study evaluating symptomatic individuals with suspected malaria in the department of Gracias a Dios, Honduras, using blood samples collected from 2021 to 2022. The diagnostic performance of Gazelle™ was compared with microscopy and nested 18ssr PCR as references. The sensitivity and specificity of Gazelle™ were 59.7% and 98.6%, respectively, while microscopy had a sensitivity of 64.9% and a specificity of 100%. The kappa index between microscopy and Gazelle™ was 0.9216 using microscopy as a reference. Both methods show similar effectiveness and predictive values. No statistical differences were observed between the results of the Gazelle™ compared to light microscopy (p = 0.6831). The turnaround time was shorter for Gazelle™ than for microscopy, but the cost per sample was slightly higher for Gazelle™. Gazelle™ showed more false-negative cases when infections were caused by Plasmodium falciparum compared to P. vivax. Conclusions: The sensitivity and specificity of Gazelle™ are comparable to microscopy. The simplicity and ease of use of the Gazelle™, the ability to run on batteries, and the immediacy of its results make it a valuable tool for malaria detection in the field. However, further development is required to differentiate Plasmodium species, especially in those regions requiring differentiated treatment.

12.
Infect Dis Rep ; 14(2): 258-265, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447883

RESUMO

Mucormycoses are rare but serious opportunistic fungal infections caused by filamentous organisms of the order Mucorales. Here we report the first molecular identification of Rhizopus oryzae (heterotypic synonym Rhizopus arrhizus), R. delemar, and Apophysomyces ossiformis as the etiological agents of three cases of severe mucormycosis in Honduras. Conventional microbiological cultures were carried out, and DNA was extracted from both clinical samples and axenic cultures. The ITS ribosomal region was amplified and sequenced. Molecular tools are suitable strategies for diagnosing and identifying Mucorales in tissues and cultures, especially in middle-income countries lacking routine diagnostic strategies.

13.
Curr Med Mycol ; 8(3): 1-8, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051554

RESUMO

Background and Purpose: Infections by emerging and multiresistant Candida species are becoming more frequent throughout the world. This study aimed to describe Candida species in different wards of a tertiary hospital in Honduras. Materials and Methods: The prevalence of species within the C. albicans complex was estimated using a molecular approach, and C. auris was investigated using a yeast pool-based DNA extraction method. In total, 328 yeast isolates were identified using phenotypic approaches. For the identification of species within the C. albicans complex, a molecular approach based on the size polymorphisms of the hpw1 gene was used. In addition, a technique was optimized based on DNA extraction in pools for the rapid identification of C. auris. Results: A total of 11 species of Candida were identified in the hospital wards. C. albicans showed the highest number of isolates (52.4%). Within the C. albicans complex, C. albicans sensu stricto was the most common, followed by C. dubliniensis. However, C. auris was not found. Conclusion: Reports on the distribution of Candida species in Honduras are limited; accordingly, the data from this study are of importance for a better understanding of their epidemiology. Moreover, a simple method was offered for the detection of C. auris that could help in its detection in low-resource settings.

14.
Malar J ; 20(1): 465, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906144

RESUMO

BACKGROUND: Central America and the island of Hispaniola have set out to eliminate malaria by 2030. However, since 2014 a notable upturn in the number of cases has been reported in the Mosquitia region shared by Nicaragua and Honduras. In addition, the proportion of Plasmodium falciparum malaria cases has increased significantly relative to vivax malaria. Chloroquine continues to be the first-line drug to treat uncomplicated malaria in the region. The objective of this study was to evaluate the emergence of chloroquine resistant strains of P. falciparum using a genetic approach. Plasmodium vivax populations are not analysed in this study. METHODS: 205 blood samples from patients infected with P. falciparum between 2018 and 2021 were analysed. The pfcrt gene fragment encompassing codons 72-76 was analysed. Likewise, three fragments of the pfmdr1 gene were analysed in 51 samples by nested PCR and sequencing. RESULTS: All samples revealed the CVMNK wild phenotype for the pfcrt gene and the N86, Y184F, S1034C, N1042D, D1246 phenotype for the pfmdr1 gene. CONCLUSIONS: The increase in falciparum malaria cases in Nicaragua and Honduras cannot be attributed to the emergence of chloroquine-resistant mutants. Other possibilities should be investigated further. This is the first study to report the genotype of pfmdr1 for five loci of interest in Central America.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Marcadores Genéticos , Honduras , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nicarágua , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
15.
Pathogens ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34832588

RESUMO

The countries of Central America and the island of Hispaniola have set the goal of eliminating malaria in less than a decade. Although efforts to reduce the malaria burden in the region have been successful, there has been an alarming increase in cases in the Nicaraguan Moskitia since 2014. The continuous decrease in cases between 2000 and 2014, followed by a rapid expansion from 2015 to the present, has generated a potential bottleneck effect in the populations of Plasmodium spp. Consequently, this study aimed to evaluate the genetic diversity of P. falciparum and the decrease in allelic richness in this population. The polymorphic regions of the pfmsp-1 and pfmsp-2 genes of patients with falciparum malaria from Honduras and Nicaragua were analyzed using nested PCR and sequencing. Most of the samples were classified into the K1 allelic subfamily of the pfmsp-1 gene and into the 3D7 subfamily of the pfmsp-2 gene. Despite the low genetic diversity found, more than half of the samples presented a polyclonal K1/RO33 haplotype. No sequence polymorphisms were found within each allelic subfamily. This study describes a notable decrease in the genetic diversity of P. falciparum in the Moskitia region after a bottleneck phenomenon. These results will be useful for future epidemiological investigations and the monitoring of malaria transmission in Central America.

16.
Pathogens ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802834

RESUMO

(1) Background: Neglected tropical diseases (NTDs) have been overlooked on the global health agenda and in the priorities of national systems in low- and middle-income countries (LMICs). In 2012, the Sustainable Development Goals (SDGs) were created to ensure healthy lives and promoting well-being for all. This roadmap set out to accelerate work to overcome the global impact of NTDs. Almost a decade has passed since NTDs were re-launched as a global priority. Investment in research and development, as well as the production of scientific literature on NTDs, is expected to have increased significantly. (2) Methods: A bibliometric analysis of the scientific production of Latin America and the Caribbean (LAC) was carried out in relation to 19 endemic NTDs. These data were compared with the scientific production in malaria, tuberculosis, and HIV/AIDS. The database available from Thomson Reuters Web of Science (WoS) was used. In addition, the average annual growth percentage was calculated for each disease. (3) Results: In the last decade, the NTDs with the highest number of publications in the world were dengue and leishmaniasis. The United States was the most prolific country in the world in 15 out of 19 NTDs analyzed. In the LAC region, Brazil was the largest contributor for 16 of the 19 NTDs analyzed. Arboviral diseases showed the highest average annual growth. The number of publications for malaria, tuberculosis and HIV/AIDS was considerably higher than for NTDs. The contribution of most LAC countries, especially those considered to be LMICs, is inadequate and does not reflect the relevance of NTDs for the public health of the population. (4) Conclusions: This is the first bibliometric analysis to assess the trend of scientific documents on endemic NTDs in LAC. Our results could be used by decision makers both to strengthen investment policies in research and development in NTDs.

17.
Pathogens ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805766

RESUMO

Cryptosporidiosis is one of the most important causes of gastroenteritis in the world, especially in low- and middle-income countries. It is caused by the Apicomplexan parasite Cryptosporidium spp., and mainly affects children and immunocompromised people, in whom it can pose a serious threat to their health, or even be life threatening. In Honduras, there are no data on parasite species or on molecular diversity or Cryptosporidium subtypes. Therefore, a cross-sectional study was conducted between September 2019 and March 2020 for the molecular identification of Cryptosporidium spp. in 102 patients living with HIV who attended a national hospital in Tegucigalpa. Stool samples were analyzed by direct microscopy, acid-fast stained smears, and a rapid lateral flow immunochromatographic test. All samples that tested positive were molecularly analyzed to identify the species and subtype of the parasite using three different markers: gp60, cowp, and 18Sr. PCR products were also sequenced. Four out of 102 samples (3.92%) were positive for Cryptosporidiumparvum, and all were assigned to subtype IIa. These findings suggest a possible zoonotic transmission in this population.

18.
Curr Trop Med Rep ; 8(1): 1-5, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425655

RESUMO

Scientific research is essential for a nation's development and is vital for generating solutions to population's health. Individual country's capacities to prevent and respond to public health issues, including health crises, is built with long-term investment in highly qualified professionals, infrastructure, and uninterrupted operating funding. Most Latin American countries, especially those at the bottom of the human development list, have limited capacity even though they are hot spots for tropical and other emerging infectious diseases. This weakness deepens these countries' dependence on nations with higher development and corresponding scientific capacity. The current COVID-19 pandemic has wreaked havoc on the health of the world's population and the global economy. Countries that lagged behind prior to the pandemic now face a myriad of additional challenges. On a more optimistic note, the pandemic could serve as a wake-up call for governments and funding agencies to strengthen scientific capacity around the world, so that we are better prepared to address the public health issues caused by current and prevalent diseases and by future diseases of pandemic potential.

19.
Insects ; 11(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708582

RESUMO

Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully reduced malaria transmission as different control methods have been applied, focusing mainly on indoor mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the houses. These animal hosts in the peridomicile could consequently become an important factor in maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5% and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of Anopheles mosquitoes in Honduras.

20.
Parasit Vectors ; 13(1): 333, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611432

RESUMO

BACKGROUND: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. METHODS: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. Morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome c oxidase 1 gene (cox1) and the ribosomal internal transcribed spacer 2 (ITS2). RESULTS: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for cox1 and ITS2, respectively. Both markers confirmed the morphological identification. cox1 showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis and An. neivai are reported in this study. CONCLUSIONS: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/classificação , Anopheles/genética , Classificação/métodos , DNA Espaçador Ribossômico/genética , Vetores de Doenças/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Marcadores Genéticos , Variação Genética , Honduras/epidemiologia , Malária/transmissão , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...